Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(1): 117, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702692

RESUMO

BACKGROUND: Irregular time series (ITS) are common in healthcare as patient data is recorded in an electronic health record (EHR) system as per clinical guidelines/requirements but not for research and depends on a patient's health status. Due to irregularity, it is challenging to develop machine learning techniques to uncover vast intelligence hidden in EHR big data, without losing performance on downstream patient outcome prediction tasks. METHODS: In this paper, we propose Perceiver, a cross-attention-based transformer variant that is computationally efficient and can handle long sequences of time series in healthcare. We further develop continuous patient state attention models, using Perceiver and transformer to deal with ITS in EHR. The continuous patient state models utilise neural ordinary differential equations to learn patient health dynamics, i.e., patient health trajectory from observed irregular time steps, which enables them to sample patient state at any time. RESULTS: The proposed models' performance on in-hospital mortality prediction task on PhysioNet-2012 challenge and MIMIC-III datasets is examined. Perceiver model either outperforms or performs at par with baselines, and reduces computations by about nine times when compared to the transformer model, with no significant loss of performance. Experiments to examine irregularity in healthcare reveal that continuous patient state models outperform baselines. Moreover, the predictive uncertainty of the model is used to refer extremely uncertain cases to clinicians, which enhances the model's performance. Code is publicly available and verified at https://codeocean.com/capsule/4587224 . CONCLUSIONS: Perceiver presents a computationally efficient potential alternative for processing long sequences of time series in healthcare, and the continuous patient state attention models outperform the traditional and advanced techniques to handle irregularity in the time series. Moreover, the predictive uncertainty of the model helps in the development of transparent and trustworthy systems, which can be utilised as per the availability of clinicians.


Assuntos
Registros Eletrônicos de Saúde , Humanos , Aprendizado de Máquina , Mortalidade Hospitalar , Modelos Teóricos
2.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36825820

RESUMO

MOTIVATION: Language models pre-trained on biomedical corpora, such as BioBERT, have recently shown promising results on downstream biomedical tasks. Many existing pre-trained models, on the other hand, are resource-intensive and computationally heavy owing to factors such as embedding size, hidden dimension and number of layers. The natural language processing community has developed numerous strategies to compress these models utilizing techniques such as pruning, quantization and knowledge distillation, resulting in models that are considerably faster, smaller and subsequently easier to use in practice. By the same token, in this article, we introduce six lightweight models, namely, BioDistilBERT, BioTinyBERT, BioMobileBERT, DistilBioBERT, TinyBioBERT and CompactBioBERT which are obtained either by knowledge distillation from a biomedical teacher or continual learning on the Pubmed dataset. We evaluate all of our models on three biomedical tasks and compare them with BioBERT-v1.1 to create the best efficient lightweight models that perform on par with their larger counterparts. RESULTS: We trained six different models in total, with the largest model having 65 million in parameters and the smallest having 15 million; a far lower range of parameters compared with BioBERT's 110M. Based on our experiments on three different biomedical tasks, we found that models distilled from a biomedical teacher and models that have been additionally pre-trained on the PubMed dataset can retain up to 98.8% and 98.6% of the performance of the BioBERT-v1.1, respectively. Overall, our best model below 30 M parameters is BioMobileBERT, while our best models over 30 M parameters are DistilBioBERT and CompactBioBERT, which can keep up to 98.2% and 98.8% of the performance of the BioBERT-v1.1, respectively. AVAILABILITY AND IMPLEMENTATION: Codes are available at: https://github.com/nlpie-research/Compact-Biomedical-Transformers. Trained models can be accessed at: https://huggingface.co/nlpie.


Assuntos
Processamento de Linguagem Natural , PubMed , Conjuntos de Dados como Assunto
3.
Lancet Digit Health ; 4(4): e266-e278, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35279399

RESUMO

BACKGROUND: Uncertainty in patients' COVID-19 status contributes to treatment delays, nosocomial transmission, and operational pressures in hospitals. However, the typical turnaround time for laboratory PCR remains 12-24 h and lateral flow devices (LFDs) have limited sensitivity. Previously, we have shown that artificial intelligence-driven triage (CURIAL-1.0) can provide rapid COVID-19 screening using clinical data routinely available within 1 h of arrival to hospital. Here, we aimed to improve the time from arrival to the emergency department to the availability of a result, do external and prospective validation, and deploy a novel laboratory-free screening tool in a UK emergency department. METHODS: We optimised our previous model, removing less informative predictors to improve generalisability and speed, developing the CURIAL-Lab model with vital signs and readily available blood tests (full blood count [FBC]; urea, creatinine, and electrolytes; liver function tests; and C-reactive protein) and the CURIAL-Rapide model with vital signs and FBC alone. Models were validated externally for emergency admissions to University Hospitals Birmingham, Bedfordshire Hospitals, and Portsmouth Hospitals University National Health Service (NHS) trusts, and prospectively at Oxford University Hospitals, by comparison with PCR testing. Next, we compared model performance directly against LFDs and evaluated a combined pathway that triaged patients who had either a positive CURIAL model result or a positive LFD to a COVID-19-suspected clinical area. Lastly, we deployed CURIAL-Rapide alongside an approved point-of-care FBC analyser to provide laboratory-free COVID-19 screening at the John Radcliffe Hospital (Oxford, UK). Our primary improvement outcome was time-to-result, and our performance measures were sensitivity, specificity, positive and negative predictive values, and area under receiver operating characteristic curve (AUROC). FINDINGS: 72 223 patients met eligibility criteria across the four validating hospital groups, in a total validation period spanning Dec 1, 2019, to March 31, 2021. CURIAL-Lab and CURIAL-Rapide performed consistently across trusts (AUROC range 0·858-0·881, 95% CI 0·838-0·912, for CURIAL-Lab and 0·836-0·854, 0·814-0·889, for CURIAL-Rapide), achieving highest sensitivity at Portsmouth Hospitals (84·1%, Wilson's 95% CI 82·5-85·7, for CURIAL-Lab and 83·5%, 81·8-85·1, for CURIAL-Rapide) at specificities of 71·3% (70·9-71·8) for CURIAL-Lab and 63·6% (63·1-64·1) for CURIAL-Rapide. When combined with LFDs, model predictions improved triage sensitivity from 56·9% (51·7-62·0) for LFDs alone to 85·6% with CURIAL-Lab (81·6-88·9; AUROC 0·925) and 88·2% with CURIAL-Rapide (84·4-91·1; AUROC 0·919), thereby reducing missed COVID-19 cases by 65% with CURIAL-Lab and 72% with CURIAL-Rapide. For the prospective deployment of CURIAL-Rapide, 520 patients were enrolled for point-of-care FBC analysis between Feb 18 and May 10, 2021, of whom 436 received confirmatory PCR testing and ten (2·3%) tested positive. Median time from arrival to a CURIAL-Rapide result was 45 min (IQR 32-64), 16 min (26·3%) sooner than with LFDs (61 min, 37-99; log-rank p<0·0001), and 6 h 52 min (90·2%) sooner than with PCR (7 h 37 min, 6 h 5 min to 15 h 39 min; p<0·0001). Classification performance was high, with sensitivity of 87·5% (95% CI 52·9-97·8), specificity of 85·4% (81·3-88·7), and negative predictive value of 99·7% (98·2-99·9). CURIAL-Rapide correctly excluded infection for 31 (58·5%) of 53 patients who were triaged by a physician to a COVID-19-suspected area but went on to test negative by PCR. INTERPRETATION: Our findings show the generalisability, performance, and real-world operational benefits of artificial intelligence-driven screening for COVID-19 over standard-of-care in emergency departments. CURIAL-Rapide provided rapid, laboratory-free screening when used with near-patient FBC analysis, and was able to reduce the number of patients who tested negative for COVID-19 but were triaged to COVID-19-suspected areas. FUNDING: The Wellcome Trust, University of Oxford Medical and Life Sciences Translational Fund.


Assuntos
COVID-19 , Triagem , Inteligência Artificial , COVID-19/diagnóstico , Humanos , SARS-CoV-2 , Medicina Estatal
4.
Artigo em Inglês | MEDLINE | ID: mdl-37015447

RESUMO

Early detection of COVID-19 is an ongoing area of research that can help with triage, monitoring and general health assessment of potential patients and may reduce operational strain on hospitals that cope with the coronavirus pandemic. Different machine learning techniques have been used in the literature to detect potential cases of coronavirus using routine clinical data (blood tests, and vital signs measurements). Data breaches and information leakage when using these models can bring reputational damage and cause legal issues for hospitals. In spite of this, protecting healthcare models against leakage of potentially sensitive information is an understudied research area. In this study, two machine learning techniques that aim to predict a patient's COVID-19 status are examined. Using adversarial training, robust deep learning architectures are explored with the aim to protect attributes related to demographic information about the patients. The two models examined in this work are intended to preserve sensitive information against adversarial attacks and information leakage. In a series of experiments using datasets from the Oxford University Hospitals (OUH), Bedfordshire Hospitals NHS Foundation Trust (BH), University Hospitals Birmingham NHS Foundation Trust (UHB), and Portsmouth Hospitals University NHS Trust (PUH), two neural networks are trained and evaluated. These networks predict PCR test results using information from basic laboratory blood tests, and vital signs collected from a patient upon arrival to the hospital. The level of privacy each one of the models can provide is assessed and the efficacy and robustness of the proposed architectures are compared with a relevant baseline. One of the main contributions in this work is the particular focus on the development of effective COVID-19 detection models with built-in mechanisms in order to selectively protect sensitive attributes against adversarial attacks. The results on hold-out test set and external validation confirmed that there was no impact on the generalisibility of the model using adversarial learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...